
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

Crom - Massively Parallel, CPU/GPU Hybrid Computation Platform for Visual
Effects

Nathan Cournia
Rhythm & Hues

cournia@rhythm.com

Bradley Smith
Rhythm & Hues

basmith@rhythm.com

Bill Spitzak
Rhythm & Hues

spitzak@rhythm.com
Casey Vanover

Rhythm & Hues
cvanover@rhythm.com

Hans Rijpkema
Rhythm & Hues

hans@rhythm.com

Josh Tomlinson
Rhythm & Hues

josht@rhythm.com

Nathan Litke
Rhythm & Hues

nlitke@rhythm.com

1 Introduction

Crom (Core Rhythm Operating Machine) was designed to provide
a flexible, extensible platform on which to develop our next gener-
ation of visual effects tools. At its heart were three key design de-
cisions: utilize a strongly-typed dependency graph where the func-
tional pieces are responsible for producing/manipulating a single
value type, and the connective tissue handles necessary type con-
versions; separate functionality and value storage so a single func-
tional piece can operate on disparate tasks without losing the ad-
vantage of a persistent cache; and make the application extensible
in both functionality and interface through all levels of production
development.

2 Dependency Graph

The core of Crom is a dependency graph divided into three primary
pieces: nodes, plugs, and contexts. Contexts describe the domain of
the computation (frame number, tile number, stereo eye, etc), nodes
compute property values, and plugs provide transportation of said
values. This division provides for two of our primary conceits: The
contexts allow for a stateless design where nodes are passed, then
promptly forget, the scope of their computation; and plugs provide
a translation mechanism which both simplifies node design and re-
duces the required number of nodes by eliminating permutations of
similar functions.

3 Interface

Like the dependency graph, the user interface is designed for flexi-
bility. Rather than provide customizations, or a selection of layouts,
Crom provides a library of panels which the user may dock, resize,
and float as he/she deems necessary. This flexibility even extends
to the manipulation of individual parameters where users may often
toggle between a variety of widgets (or, if they’re technically savvy
enough, write their own).

The interface is also decoupled from the dependency graph. Com-
putations are performed asynchronously with the values displayed
only when ready. This allows the interface to display expensive
calculations without the loss of responsiveness. It also has the ca-
pacity to provide easy transition to a cloud computing paradigm in
situations where that might prove useful.

4 Hybrid GPU/CPU Compositor

Although Crom was not written for a particular application, its first
production use is as a compositor. Where possible, nodes leverage
on the power of the GPU passing down not image data, but shader
functions that can be compiled to process individual pixels. This al-
lows computation to be deferred until actually required, and allows
the resulting node tree to be effectively optimized prior to

Figure 1: Using Crom as a compositor

computation. The result is a node graph that effectively performs
as a visual computing language.

Where operation on the CPU is necessary (or preferable), plugs
handle texture to buffer conversions so data is passed between the
two devices seamlessly. Where no GPU is present, the application
uses OpenCL to shift all functions to CPU-only processing.

5 Extensibility

Crom is designed to be an open platform. Panels, and node and
plug interfaces can all be written in Python as can the nodes them-
selves. Users can generate macros which bundle together a network
of nodes into a single tool, with the power to create and customize
the interface. Those tools can then be uploaded to our app store,
Anvil, and installed on a per-person or per-show basis.

The user-level of development has found particular usage in the
compositor. Because Crom optimizes the result of the node graph,
there’s very little performance difference between a compiled node
and a macro providing the same functionality. As a result, we’re
able to provide a relatively small selection of core nodes, and have
users create more specific functionality out of them. This allows the
compositor to be easier to maintain and operate in much the same
way reduced instruction set computing does.

6 Conclusion

Crom is an application informed by many years of visual effects
experience. At its core, it’s fast, highly parallelized, and memory
efficient. On its surface, it’s extremely flexible. It’s a tool designed
to evolve through usage and leverage on every resource available
both in terms of computation and development.

mailto:cournia@rhythm.com
mailto:basmith@rhythm.com
mailto:spitzak@rhythm.com
mailto:cvanover@rhythm.com
mailto:hans@rhythm.com
mailto:josht@rhythm.com
mailto:nlitke@rhythm.com

